私たちが考える、自然と共生する設計の基本

自然と共生する設計は、単に「エコ」や「環境にやさしい」という言葉だけでは語り尽くせません。
私たちは、自然エネルギーを最大限に活かし、住む人の快適さと建物の持続可能性を両立させることを目指しています。その中でも特に注目しているのが、「日射取得」 の工夫です。


建物を設計する際、まず重要になるのが、敷地の日影を考慮したシミュレーションです。
このプロセスでは、太陽の動きを観察し、日射の角度や季節ごとの変化を検討します。そして、太陽光が効率よく差し込む窓の位置を慎重に決定します。

たとえば、周囲を建物に囲まれた敷地では、日射が届くポイントが限られることがあります。このような場合、ピンポイントで「日射取得」を確保する工夫が求められます。窓を設置する壁面の位置が建物全体の性能を左右するため、シミュレーションの結果をもとに、最適な配置を導き出します。


窓には日射取得の役割だけでなく、建築基準法を満たすための採光や換気を確保するという重要な機能もあります。
そのため、窓の配置を考える際には、自然エネルギーの活用と法規上の要件を同時に満たすことが必要です。これを実現するためには、設計者の技術と工夫が求められます。


自然と共生する設計は、単なるデザインの工夫や高性能な設備に頼るだけではなく、精密なシミュレーションを活用した自然エネルギーの利用が鍵となります。
今回ご紹介した日射取得を意識した窓の配置は、その一つの具体例です。
建物が自然と調和することで、住む人にとって快適で、環境にも配慮した住まいが実現します。

敷地と環境を活かす建築デザイン: シミュレーションの力

建築デザインのプロセスでは、シミュレーションが理想の形を見つけるために重要な役割を果たします。
理想の形を実現するには、好みのスタイルや建築法規など、さまざまな要件があります。しかし、シミュレーションは自然環境を十分に活かすために欠かせないツールです。

例えば、あるプロジェクトでは、周囲を建物に囲まれた敷地が課題となりました。

そこで、日影シミュレーションを活用することで、採光を確保できる建物配置を見つけることができました。

このように、周辺環境の影響を把握するためには、シミュレーションが欠かせません。

建物の外皮性能(断熱材の厚さ)やUa値だけでは、燃費の良い建物は実現できません。
例えば、冬季に十分な太陽光を取り入れるための南向きの窓配置や、夏季の強い日射を遮る庇(シェーディング)の設計は、シミュレーションを通じた確認があって初めて適切に行えます。
パッシブハウスの設計では、断熱や気密などを重視した5つの基本原則があります。この5原則に加え、太陽光をどのように取り入れ、遮るかというバランスも重要なポイントです。

こうしたプロセスを経て、自然環境を最大限に活かした建物配置を実現しました。
シミュレーションは、理想のデザインを形作るための強力なサポートツールです。技術を活かして、より快適で持続可能な住まいを目指していきたいですね。

本記事では、シミュレーションの重要性について概要をお伝えしました。具体的な実例については、追記していく予定ですので、引き続きご覧いただければ幸いです。

— #建築デザイン #シミュレーションの力 #パッシブハウス

厳しい規制の中で生まれる創造性:カウフマン建築が教えること

先日投稿しました建築家ヘルマンカウフマン氏の講演会の続きになります。
今回の記事では、竹中工務店との協力による日本の施工現場での実践例に注目しました。

一方、前回の記事では、ウッドステーションやモックの技術進化について触れています。それらの技術が背景にあることで、本記事で取り上げるパッシブタウン第5期街区の事例にも、さらに深い意義が生まれています。


(※前回の講演記事はこちら

施工技術と設計哲学:パッシブタウン第5期街区

 YKK不動産が推進する「パッシブタウン」プロジェクトの最終街区が公開されました。このプロジェクトは、富山県産材を87%使用し、脱炭素建築を目指しています。RCコア構造により地震力を軽減し、耐火性を備えた木質ハイブリッド構造が特徴。Power to Gas技術やプレファブ工法の活用による効率的な省エネ設計が、持続可能な社会への一歩として注目されています。 

記事のリンクはこちらから

木質ハイブリッド構造でつくる最先端の脱炭素建築(※日経クロステックより要約)」

YKK Passivetown, Kurobe Hermann Kaufmann + Partner ZT GmbHより


環境と技術の最適解を求めて

カウフマン氏の日本の地震に対する法規や消防法への対応は、非常に大変だったとのことでした。(通訳の方が訳した「消防法」という言葉は、おそらく「防火規定」を指しているのでしょう)

講演中にカウフマン氏の基本図面と実施図面を比較する機会がありました。センターコアの占める割合や厚さ、カーテンウォールの厚さなどが大きく異なり、これらを比較することで、日本の規制が建築デザインに与える影響を具体的に理解することができました。またオーストリアのフォアアールベルク州にあるLifeCycle Tower (LCT ONE)との比較も行われ、コア(LCT ONEでは片側偏心コアでしたが)の割合の違いは一目瞭然でした。


カウフマン氏の設計では、スラブの薄さやカーテンウォールの軽やかさがとても魅力的ですが、日本の厳しい耐震・防火規定により、設計の見直しが必要となりました。その中で、竹中工務店と協力し、RCコアを増強しつつも木材の活用を最大限に引き出したハイブリッド構造という革新的な解決策が生まれました。


建築設計において、与えられた条件の中で最適解を導き出すプロセスは、単なる制約への対応ではなく、新たな価値を創造する機会となります。このパッシブタウン第5期街区プロジェクトは、まさにその典型例といえるでしょう。このような厳しい制約の中から、新しいアイディアを生み出している姿勢がとても印象的でした。


施工中の雨とプレファブ工法の役割

また、カウフマン氏は講演では、施工中の雨による木材の濡れを極力避けることの重要性についても触れていました。木材は湿気を含むことで品質が低下する可能性があるため、建材の搬入スケジュールや現場の雨対策が設計と同じくらい重要だと強調しています。

オーストリアと比較し、『施工途中で雨が降っても雨漏りしない』という竹中工務店の施工技術を高く評価していました。この点は、日本の施工現場における優れた管理体制と技術力を象徴していると言えます。日本の施工現場では、雨のリスクを避ける工夫が投稿などで話題になるように、雨対策は日本の施工現場において、重要な管理項目の一つです。日本の施工体制の素晴らしいポイントの一つです。

迅速施工を実現するため採用されたプレファブ工法には、木材を湿気から守りながら作業効率を上げるという、カウフマン氏の哲学が反映されています。

持続可能な技術としての可能性


カウフマン氏の設計は、シンプルなデザインと精緻なディテールなど、その意匠面に注目が集まりがちです。ですが、その設計を実現するために、直面した条件から逃げず、粘り強く問題解決を重ねるカウフマン氏の姿勢に強い印象を受けました。

竹中工務店の雨対策や迅速施工の技術は、プレファブ工法の可能性をさらに広げ、日本独自の建築価値をさらに深化させました。また、カウフマン氏が示した厳しい規制の中で創造性を発揮する設計哲学は、私たちの未来の建築を導く重要な示唆に満ちています。この技術の進化は、単なる効率化ではなく、持続可能な社会に向けた新しい価値創造の一環です。こうした建築の可能性を、私たちの生活や環境にどのように活用できるのか、一緒に考え続けたいと思います。

前回の記事はこちらからどうぞ

THERM解析で理解するヒートブリッジ:学生からプロまでの活用法

THERMで進めるヒートブリッジ解析と設計改善

建物の外皮性能が向上すると、特に気になり始めるのがヒートブリッジです。ヒートブリッジとは、建物の構造部分で断熱性能が低く、熱が集中して逃げやすい箇所を指します。主に壁と床の接合部や窓枠、バルコニーの取り付け部分などで発生し、断熱性が弱い部分でエネルギーが無駄に消費され、冷暖房効率が下がるだけでなく、結露やカビのリスクも増えることがあります。

THERMは、このヒートブリッジをシミュレーションし、視覚的に解析できる非常に有効なツールです。このソフトウェアを使うことで、どこに熱のロスがあるかを明確にし、設計の改善に役立てることが可能です。


THERMの主な特徴

THERMは、建築部材の熱伝達を計算し、視覚化できるソフトで、特に教育や設計実務において有用です。主な特徴を以下にまとめました:

  1. 等温線と熱流束ベクトルの視覚化
    建物のどこから熱が逃げやすいかを示す等温線や、熱の流れを示すフラックスベクトルを通じて、ヒートブリッジや結露のリスクを視覚的に確認できます。
  2. 材料や構造変更の影響を解析
    木材や鋼材など、異なる材料が建物の熱性能に与える影響を数値で比較でき、設計段階での最適な材料選びに役立ちます。
  3. U値による断熱性能の評価
    U値は部位ごとの断熱性能を示し、建物の全体性能を決めるのに役立ちます。

グラフィックによる解析結果の可視化

THERMがシミュレーション結果は数種類のグラフィックで表現されます。その中でも、以下のグラフィック結果がわかりやすいです。

  • 等温線:カラーで表示され、断面の温度勾配や熱応力が視覚的に示されます。熱の出入りや結露リスクを予測するのに役立ちます。
  • フラックスベクトル:熱流束の量と方向を矢印の長さと向きで表現し、どこから熱が集中して出入りしているかを把握できます。
  • U値:全体的な熱伝達率を示し、断面の断熱性能を定量的に評価します。

例えば、基礎りの断面解析では、等温線とフラックスベクトルがどのように分布しているかを確認すると、基礎立上りと底盤のジョイント部分から多くの熱が逃げていることがわかります。また底盤から外部の地上面に熱が逃げている様子もわかります。底盤下の断熱材を全面に敷詰めるか、ペリメータのみにするか等もシミュレーションしても面白いですね。
このようにシミュレーションすることで問題点を特定して改善策を講じることができます


教育ツールとしてのTHERM

以上の情報は「teaching-2dheat-transfer-therm2-0」という資料から翻訳し、要約したものに私の感想を加筆しています。THERMを使った建築部材の熱解析や、エネルギー性能向上の学習に非常に有効だと思います。建築を学んでいる学生さん、温熱の勉強をはじめて間もない人など、理論と実践を結びつけるサポートになるのではないかと思います。
teaching-2dheat-transfer-therm2-0


実際の設計での活用

THERMを活用したヒートブリッジ解析を行うことで、設計の初期段階から建物全体のエネルギー効率を最適化し、問題箇所を明確にすることができます。シミュレーションを基に設計を改善することで、住まいの快適性や断熱性能が向上します。

私が大切にしている「あるべきところに自然に納まる」という考え方にも通じるところがあります。THERMのシミュレーション結果は、建物の各部分が本来持つべき性能を発揮し、快適でエネルギー効率の高い空間を実現するための道筋を示してくれます。このステップを重ねることにより、美しく調和のとれた空間を創り出しながら、エネルギー効率を高めることが可能だと考えています。